RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2018

SECOND YEAR (BATCH 2016-19)

MATHEMATICS (Honours)

Time : 11.00 am – 3.00 pm

Date : 19/05/2018

Paper : IV

Full Marks : 100

[Use a separate Answer Book for each group]

Group - A

Answer <u>any five</u> questions from <u>Question No. 1 to 8</u>:

- 1. a) Let (X, d) be a metric space, $A \subseteq X$ and $x \in X$. Prove that $x \in A$ iff d(x, A) = 0.
 - b) Suppose $A \subseteq \mathbb{R}$. Show that the set of all isolated points of A is at most a countable set. [3+4]
- 2. a) Let $\{x_n\}_{n=1}^{\infty}$ be a convergent sequence in a metric space X converging to $x_0 \in X$. Prove that $\{x_n\}_1^{\infty} \cup \{x_0\}$ is compact.
 - b) Define a Baire space. Show that with usual metric, the space \mathbb{Q} is not a Baire space. [3+4]
- Let (X,d) be a metric space such that d(A, B) > 0 for any two disjoint closed subsets A, B of X. Show that (X,d) is complete. Is the converse true? Justify your answer. [4+3]
- 4. a) Let (X,d) be a metric space and A, B are compact subsets of X. Show that there exists a ∈ A and b ∈ B such that d(A,B) = d(a,b) and if A and B are disjoint then d(A,B) > 0.
 [d(A, B) = inf {d(x, y): x ∈ A, y ∈ B}]
 - b) Let X and Y be metric spaces and there exists a continuous map $f: X \to Y$ such that $G(f) = \{(x, f(x)) : x \in X\}$ is not a complete subset of X × Y. Prove that either X or Y fails to be a complete metric space. [4+3]
- 5. a) Suppose X is a metric space such that every uncountable set in X has a limit point. Show that X is separable.
 (Hint : For each n∈N, by Zorn's lemma, choose a maximal set in X, the distance between any two points of which is at least 1/n).
 - b) Suppose 'd' is a metric on \mathbb{N} . Show that (\mathbb{N}, d) is 2^{nd} countable.
- 6. a) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a polynomial. Show that f sends every closed set in \mathbb{R} to a closed set in \mathbb{R} .
 - b) Let $A \subseteq \mathbb{R}$ be such that each continuous map $f : A \to \mathbb{R}$ is bounded. Show that A is compact. [4+3]
- 7. a) Let C[0,1] be the set of all real valued continuous maps over [0,1]. Define two metrices d_1 and d_2 on C[0,1] as follows :

$$d_{1}(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)|; \ d_{2}(f,g) = \left(\int_{0}^{1} (f-g)^{2} dx\right)^{\frac{1}{2}}$$

Check whether d_1 and d_2 are equivalent or not.

b) Give example of a connected subset of a metric space such that interior of the set is not connected. [4+3]

[5×7]

[5+2]

- 8. a) Show that \mathbb{R} is connected.
 - b) Let $X = \mathbb{N} \cup \{a\}$ where $a \notin \mathbb{N}$. Define $d: X \times X \to \mathbb{R}$ by $d(x, y) = 1, x, y \in \mathbb{N}, x \neq y$ $d(a, x) = d(x, a) = 1 + \frac{1}{x}, x \in \mathbb{N}$ $d(x, y) = 0, x = y; x, y \in X$ Show that (X,d) is a complete metric space.

Answer any three questions from <u>Question No. 9 to 13</u>:

- 9. a) Prove that if a power series $\sum_{n=0}^{\infty} a_n x^n$ converges for $x = x_1$ and $x = x_2$, then the power series converges for any x between x_1 and x_2 .
 - b) Let f be defined on $\left(-\frac{1}{3},\frac{1}{3}\right)$ by $f(x) = 1 + 2 \cdot 3x + 3 \cdot 3^2 x^2 + \dots + n \cdot 3^{n-1} x^{n-1} + \dots$ Prove that f is continuous on $\left(-\frac{1}{3},\frac{1}{3}\right)$. [3+2]
- 10. Show that the series $\sum_{n=1}^{\infty} \frac{x}{(nx+1)\{(n-1)x+1\}}$ is uniformly convergent on [a,b] for 0 < a < b. Justify whether it is uniformly convergent in [0,b]. [4+1]
- 11. Check the convergence and uniform convergence of the following sequence of functions

a)
$$\frac{nx}{1+n^3x^2}$$
, $n \in \mathbb{N}$, $x \in [0,1]$
b) nxe^{-nx^2} , $x \ge 0, n \in \mathbb{N}$. [3+2]

- 12. Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^3 + n^4 x^2}$ is uniformly convergent over \mathbb{R} . If S(x) is the sum function, verify that S'(x) is obtained by term by term differentiation. [2+3]
- 13. Prove that a power series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R > 0 iff $\sum_{n=0}^{\infty} na_n x^{n-1}$ has the same radius of convergence.

Group - B

Answer any three questions from Question No. 14 to 18 :

- 14. a) Solve the equation $(y^2 + z^2 x^2)dx 2xydy 2zxdz = 0$ after satisfying the condition of integrability.
 - b) Find the solution in series of the equation $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + x^2y = 0$ about x = 0. [5+5]
- 15. a) Solve $(1-x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} y = x(1-x^2)$ given that y = x is a solution of its reduced equation.
 - b) Solve: $\frac{dx}{x^2 + a^2} = \frac{dy}{xy az} = \frac{dz}{xz + ay}.$

[3×10]

[3+4]

[3×5]

c) Use convolution theorem to find
$$L^{-1}\left\{\frac{1}{(p+1)(p-2)}\right\}$$
. [4+4+2]

16. a) Find the complete integral of the partial differential equation $z^2 = \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} xy$ by Charpit's method.

b) Solve the equation : $(x-1)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + y = (x-1)^2$ using the method of variation of parameters. [5+5]

17. a) Find all the eigen-values and eigen-functions of $\frac{d}{dx}\left(4e^{-x}\frac{dy}{dx}\right) + (1+\lambda)e^{-x}y = 0; \quad y(0) = 0,$ y(1) = 0.

- b) Find the equation of the integral surface given by the differential equation 2y(z-3)p + (2x-z)q = y(2x-3), which passes through the circle z = 0, $x^2 + y^2 = 2x$. [5+5]
- 18. a) Determine the solution of the following initial value problem by Laplace transform technique : $(D^2 + 2D + 1)x = 3te^{-t}$, given x(0) = 4, x'(0) = 2.
 - b) If F(t) be a periodic function with period T > 0, then prove that $L{F(t)} = \frac{\int_0^T e^{-pt} F(t) dt}{1 e^{-pT}}$.
 - c) Solve : $x \frac{d^2y}{dx^2} + (x-1)\frac{dy}{dx} y = x^2$, by the method of operational factors. [4+3+3]

[2×10]

Answer any two questions from Question No. 19 to 21 :

- 19. a) Show that the points on the curve $y^2 = 4a\left(x + a\sin\frac{x}{a}\right)$ where the tangents are parallel to x-axis lie on the parabola $y^2 = 4ax$.
 - b) Find the pedal equation of the equiangular spiral $r = ae^{\theta \cot \alpha}$.
 - c) Show that the radius of curvature at any point on the Cardiode $r = a(1 \cos \theta)$ is proportional to \sqrt{r} . [4+3+3]
- 20. a) Find the envelope of $\frac{x}{a} + \frac{y}{b} = 1$ with the condition $a^n + b^n = c^n$, where 'a' and 'b' are parameters and 'n' and 'c' are real constants.
 - b) Find the asymptotes of the curve $x^3 + 2x^2y xy^2 2y^3 + 4y^2 + 2xy + y 1 = 0$. [5+5]
- 21. a) Find the area of the surface generated by revolving about the y-axis that part of the astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$, that lies in the first quadrant.
 - b) Determine the position and nature of the multiple point(s) of the curve $x^3 y^2 7x^2 + 4y + 15x 13 = 0$.
 - c) Show that $y = x^4$ is concave upwards at the origin and $y = e^x$ is everywhere concave upwards. [4+4+2]

_____ × _____